44 research outputs found

    Biological Behaviour of Craniopharyngiomas

    Get PDF
    Jakob Erdheim (1874-1937) first described craniopharyn-giomas (CPs) as "hypophyseal duct tumours" and postulated the existence of two tumour types based on their histological features: (1) an aggressive type showing similarities to adamantinomas (tumours of the jaw) and (2) a more benign form characterised by the presence of papillary structures. More than a century later, these initial observations have been confirmed; based on their distinct genetic, epigenetic, and histological features, the WHO classifies CPs into two types: adamantinomatous CPs (ACPs) and papillary CPs (PCPs). Considerable knowledge has been generated on the biology of CPs in the last 20 years. Mutations in CTNNB1 (encoding β-catenin) are prevalent in ACP, whilst PCPs frequently harbour mutations in BRAF (p.BRAF-V600E). The consequence of these mutations is the activation of either the WNT/β-catenin (ACP) or the MAPK/ERK (PCP) pathway. Murine models support a critical role for these mutations in tumour formation and have provided important insights into tumour pathogenesis, mostly in ACP. A critical role for cellular senescence has been uncovered in murine models of ACP with relevance to human tumours. Several gene profiling studies of human and murine ACP tumours have identified potential targetable pathways, and novel therapeutic agents are being used in clinical and pre-clinical research, in some cases with excellent results. In this review, we will present the accumulated knowledge on the biological features of these tumours and summarise how these advances are being translated into potential novel treatments

    Homeostatic and tumourigenic activity of SOX2+ pituitary stem cells is controlled by the LATS/YAP/TAZ cascade

    Get PDF
    SOX2 positive pituitary stem cells (PSCs) are specified embryonically and persist throughout life, giving rise to all pituitary endocrine lineages. We have previously shown the activation of the STK/LATS/YAP/TAZ signalling cascade in the developing and postnatal mammalian pituitary. Here, we investigate the function of this pathway during pituitary development and in the regulation of the SOX2 cell compartment. Through loss- and gain-offunction genetic approaches, we reveal that restricting YAP/TAZ activation during development is essential for normal organ size and specification from SOX2+ PSCs. Postnatal deletion of LATS kinases and subsequent upregulation of YAP/TAZ leads to uncontrolled clonal expansion of the SOX2+ PSCs and disruption of their differentiation, causing the formation of non-secreting, aggressive pituitary tumours. In contrast, sustained expression of YAP alone results in expansion of SOX2+ PSCs capable of differentiation and devoid of tumourigenic potential. Our findings identify the LATS/YAP/TAZ signalling cascade as an essential component of PSC regulation in normal pituitary physiology and tumourigenesis

    MAPK pathway activation in the embryonic pituitary results in stem cell compartment expansion, differentiation defects and provides insights into the pathogenesis of papillary craniopharyngioma.

    Get PDF
    Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2+ve stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2+ve cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a critical function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2+ve cells and suggest that persistent proliferative capacity of Sox2+ve cells may underlie the pathogenesis of PCP

    The effects of stress on brain and adrenal stem cells

    Get PDF
    The brain and adrenal are critical control centers that maintain body homeostasis under basal and stress conditions, and orchestrate the body’s response to stress. It is noteworthy that patients with stress-related disorders exhibit increased vulnerability to mental illness, even years after the stress experience, which is able to generate long-term changes in the brain's architecture and function. High levels of glucocorticoids produced by the adrenal cortex of the stressed subject reduce neurogenesis, which contributes to the development of depression. In support of the brain–adrenal connection in stress, many (but not all) depressed patients have alterations in the components of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis, with enlarged adrenal cortex and increased glucocorticoid levels. Other psychiatric disorders, such as post-traumatic stress disorder, bipolar disorder and depression, are also associated with abnormalities in hippocampal volume and hippocampal function. In addition, hippocampal lesions impair the regulation of the LHPA axis in stress response. Our knowledge of the functional connection between stress, brain function and adrenal has been further expanded by two recent, independent papers that elucidate the effects of stress on brain and adrenal stem cells, showing similarities in the way that the progenitor populations of these organs behave under stress, and shedding more light into the potential cellular and molecular mechanisms involved in the adaptation of tissues to stress

    Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma

    Get PDF
    Activating mutations in the gene encoding β-catenin have been identified in the paediatric form of human craniopharyngioma (adamantinomatous craniopharyngioma, ACP), a histologically benign but aggressive pituitary tumour accounting for up to 10% of paediatric intracranial tumours. Recently, we generated an ACP mouse model and revealed that, as in human ACP, nucleocytoplasmic accumulation of β-catenin (β-catnc) and over-activation of the Wnt/β-catenin pathway occurs only in a very small proportion of cells, which form clusters. Here, combining mouse genetics, fluorescence labelling and flow-sorting techniques, we have isolated these cells from tumorigenic mouse pituitaries and shown that the β-catnc cells are enriched for colony-forming cells when cultured in stem cell-promoting media, and have longer telomeres, indicating shared properties with normal pituitary progenitors/stem cells (PSCs). Global gene profiling analysis has revealed that these β-catnc cells express high levels of secreted mitogenic signals, such as members of the SHH, BMP and FGF family, in addition to several chemokines and their receptors, suggesting an important autocrine/paracrine role of these cells in the pathogenesis of ACP and a reciprocal communication with their environment. Finally, we highlight the clinical relevance of these findings by showing that these pathways are also up-regulated in the β-catnc cell clusters identified in human ACP. As well as providing further support to the concept that pituitary stem cells may play an important role in the oncogenesis of human ACP, our data reveal novel disease biomarkers and potential pharmacological targets for the treatment of these devastating childhood tumours.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-012-0957-9) contains supplementary material, which is available to authorized users

    B1 SOX Coordinate Cell Specification with Patterning and Morphogenesis in the Early Zebrafish Embryo

    Get PDF
    The B1 SOX transcription factors SOX1/2/3/19 have been implicated in various processes of early embryogenesis. However, their regulatory functions in stages from the blastula to early neurula remain largely unknown, primarily because loss-of-function studies have not been informative to date. In our present study, we systematically knocked down the B1 sox genes in zebrafish. Only the quadruple knockdown of the four B1 sox genes sox2/3/19a/19b resulted in very severe developmental abnormalities, confirming that the B1 sox genes are functionally redundant. We characterized the sox2/3/19a/19b quadruple knockdown embryos in detail by examining the changes in gene expression through in situ hybridization, RT–PCR, and microarray analyses. Importantly, these phenotypic analyses revealed that the B1 SOX proteins regulate the following distinct processes: (1) early dorsoventral patterning by controlling bmp2b/7; (2) gastrulation movements via the regulation of pcdh18a/18b and wnt11, a non-canonical Wnt ligand gene; (3) neural differentiation by regulating the Hes-class bHLH gene her3 and the proneural-class bHLH genes neurog1 (positively) and ascl1a (negatively), and regional transcription factor genes, e.g., hesx1, zic1, and rx3; and (4) neural patterning by regulating signaling pathway genes, cyp26a1 in RA signaling, oep in Nodal signaling, shh, and mdkb. Chromatin immunoprecipitation analysis of the her3, hesx1, neurog1, pcdh18a, and cyp26a1 genes further suggests a direct regulation of these genes by B1 SOX. We also found an interesting overlap between the early phenotypes of the B1 sox quadruple knockdown embryos and the maternal-zygotic spg embryos that are devoid of pou5f1 activity. These findings indicate that the B1 SOX proteins control a wide range of developmental regulators in the early embryo through partnering in part with Pou5f1 and possibly with other factors, and suggest that the B1 sox functions are central to coordinating cell fate specification with patterning and morphogenetic processes occurring in the early embryo

    Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis

    Get PDF
    Familial growth hormone deficiency provides an opportunity to identify new genetic causes of short stature. Here we combine linkage analysis with whole-genome resequencing in patients with growth hormone deficiency and maternally inherited gingival fibromatosis. We report that patients from three unrelated families harbor either of two missense mutations, c.347G>T p.(Arg116Leu) or c.1106C>T p.(Pro369Leu), in KCNQ1, a gene previously implicated in the long QT interval syndrome. Kcnq1 is expressed in hypothalamic GHRH neurons and pituitary somatotropes. Co-expressing KCNQ1 with the KCNE2 β-subunit shows that both KCNQ1 mutants increase current levels in patch clamp analyses and are associated with reduced pituitary hormone secretion from AtT-20 cells. In conclusion, our results reveal a role for the KCNQ1 potassium channel in the regulation of human growth, and show that growth hormone deficiency associated with maternally inherited gingival fibromatosis is an allelic disorder with cardiac arrhythmia syndromes caused by KCNQ1 mutations

    An updated view of hypothalamic-vascular-pituitary unit function and plasticity

    Get PDF
    The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic–pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment
    corecore